వ్యాసార్థము
వృత్త కేంద్రం నుండి వృత్తం పై గల బిందువు నకు గల దూరాన్ని ఆ వృత్త వ్యాసార్థం లేదా అర్ధ వ్యాసం అంటారు. దీనిని ఆంగ్లంలో రాడియస్ (radius) అంటారు. వృత్త కేంద్రాన్ని వృత్తం పైని ఏదేని బిందువుతో కలిపే రేఖా ఖండాన్ని ఆ వృత్త వ్యాసం అంటారు. ఒక వృత్తానికి లెక్కలేనన్ని వ్యాసార్థాలు ఉంటాయి. వ్యాసార్థమును r అను అక్షరంతో సూచిస్తారు.
శాస్త్రీయ జ్యామితిలో, ఒక వృత్తం లేదా గోళం యొక్క వ్యాసార్థం దాని కేంద్రం నుండి దాని చుట్టుకొలత వరకు ఉన్న రేఖాఖండం. మరింత ఆధునిక వాడుకలో కేంద్రం నుండి చుట్టుకొలతకు గల పొడవు. ఈ పేరు లాటిన్ radius నుండి వచ్చింది,[1] అంటే కిరణం లేదా రథ చక్రం స్పోక్[2] . వ్యాసార్థం సాధారణ సంక్షిప్తీకరణ, గణిత చరరాశి పేరు r. వ్యాసార్థాన్ని పొడిగిస్తే రెండు రెట్లు వ్యాసార్థాన్ని వ్యాసం d గా నిర్వచించబడింది.[3]
ఒక వస్తువుకు కేంద్రం లేకపోతే, ఈ పదం దాని వక్రతా వ్యాసార్థంగా తెలుపుతారు.
క్రమ బహుభుజిలో దాని వ్యాసార్థం, వక్రతా వ్యాసార్థానికి సమానంగా ఉంటుంది. [4] క్రమ బహుభుజిలో అంతర వ్యాసార్థాన్ని అపోథెం అంటారు. [5]
ఒక వృత్తం చుట్టుకొలత తెలిస్తే దాని వ్యాసార్థం
సూత్రములు
జ్యామితీ చిత్రాలకు వ్యాసార్థం దాని ఇతర కొలతల ద్వారా నిర్వచించబడినది.
వృత్తములు
ఒక వృత్త వైశాల్యం మూస:Math అయితే దాని వ్యాసార్థానికి సూత్రం.
సరేఖీయం కాని మూడు బిందువులు మూస:Math, మూస:Math, మూస:Math అయితే ఆ బిందువుల గుండే పోయే వృత్త వ్యాసానికి సూత్రం:
మూస:Math ను మూస:Mvar తో సూచిస్తారు. ఈ సూత్రం సైన్ సూత్రం ద్వారా ఉపయోగించబడుతుంది. నిరూపక రేఖాగణితంలో మూడు బిందువులు మూస:Math, మూస:Math, మూస:Math, అయితే ఆ బిందువుల గుండా పోయే వృత్త వ్యాసార్థం:
ఇవి కూడా చూడండి
మూలాలు
- ↑ మూస:Cite web
- ↑ Definition of Radius at dictionary.reference.com. Accessed on 2009-08-08.
- ↑ Definition of radius at mathwords.com. Accessed on 2009-08-08.
- ↑ Barnett Rich, Christopher Thomas (2008), Schaum's Outline of Geometry, 4th edition, 326 pages. McGraw-Hill Professional. మూస:Isbn, మూస:Isbn. Online version accessed on 2009-08-08.
- ↑ Jonathan L. Gross, Jay Yellen (2006), Graph theory and its applications. 2nd edition, 779 pages; CRC Press. మూస:Isbn, 9781584885054. Online version accessed on 2009-08-08.