మాదీకరణము
అర్థవాహకాల ఉత్పత్తిలో, డోపింగ్ (మాదీకరణం) అనేది దాని విద్యుత్, ఆప్టికల్, నిర్మాణ లక్షణాలను మాడ్యులేట్ చేసే ఉద్దేశ్యంతో మలినాలను ఒక స్వభావజ అర్థవాహకం లోనికి ఉద్దేశపూర్వకంగా ప్రవేశపెట్టడం. డోప్ చేయబడిన పదార్థాన్ని అస్వభావజ అర్థవాహకం గా సూచిస్తారు. సెమీకండక్టర్ (అర్థవాహకం) అధిక స్థాయికి డోప్ చేయబడితే అది అర్థవాహకం కంటే వాహకం లాగా పనిచేస్తుంది, దీనిని క్షీణించిన సెమీకండక్టర్ అని పిలుస్తారు. ఫాస్పరస్లు, సింటిలేటర్ల విషయంలో డోపింగ్ను యాక్టివేషన్ అంటారు. కొన్ని వర్ణద్రవ్యాలలో రంగును నియంత్రించడానికి డోపింగ్ కూడా ఉపయోగించబడుతుంది.
చరిత్ర
అర్థవాహకాల డోపింగ్ యొక్క ప్రభావాలు క్రిస్టల్ రేడియో డిటెక్టర్లు, సెలీనియం రెక్టిఫైయర్ల వంటి పరికరాల్లో అనుభవమున్న చాలాకాలంగా తెలుసు. ఉదాహరణకు, 1885 లో షెల్ఫోర్డ్ బిడ్వెల్, 1930 లో జర్మన్ శాస్త్రవేత్త బెర్న్హార్డ్ గడెన్ లు స్వతంత్రంగా, మలినాలను కలిగి ఉన్నందున అర్థవాహకాలకు కొన్ని లక్షణాలు ఉంటాయని తెలియజేసారు[1][2]. డోపింగ్ ప్రక్రియను అధికారికంగా మొదటిసారిగా జాన్ రాబర్ట్ వుడ్యార్డ్ రెండవ ప్రపంచ యుద్ధంలో స్పెర్రీ గైరోస్కోప్ కంపెనీలో పనిసినపుడు అభివృద్ధి చేసాడు. దీనికి 1950 లో యుఎస్ పేటెంట్ జారీ చేశారు[3]. రాడార్పై అతను చేసిన పరిశోధనలకు వచ్చిన అభ్యర్థనలు వుడ్యార్డ్కు సెమీకండక్టర్ డోపింగ్ పై పరిశోధన చేసే అవకాశాన్ని నిరాకరించాయి. అదే విధమైన పరిశోధనలు "బెల్ లాబ్స్" లో గోర్డాన్ కె. టీల్, మోర్గాన్ స్పార్క్స్ అధ్వర్యంలో జరిగాయి. దీనికి 1953లో యు.ఎస్. పేటెంట్ వచ్చింది[4][5].
వాహక గాఢత
ఉపయోగించిన డోపెంట్ (డోపింగ్ చేయాల్సిన మలినం) గాఢత అనేక విద్యుత్ లక్షణాలను ప్రభావితం చేస్తుంది. పదార్థ ఆవేశ వాహక గాఢత చాలా ముఖ్యమైనది. ఉష్ణ సమతాస్థితి వద్ద స్వభావజ అర్థవాహకంలో ఎలక్ట్రాన్లు, హోల్లు (ఎలక్ట్రాన్ లేమిని హోల్ అంటారు) సమానంగా ఉంటాయి.
ఉష్ణ సమతుల్యత వద్ద అంతర్గత కాని సెమీకండక్టర్లో, సంబంధం అవుతుంది (తక్కువ డోపింగ్ కోసం):
ఉష్ణ సమతుల్యత వద్ద స్వభావజ అర్థవాహకం కాని వాటిలో ఈ సంబంధం ఇలా ఉంటుంది. (తక్కువ డోపింగ్)
ఇందులో వాహక ఎలక్ట్రాన్ల గాఢత n0 , వాహక హోల్ గాఢత p0 , పదార్థ స్వభావజ వాహక గాఢత ni. పదార్థాల్ అమధ్య స్వభావజ వాహక గాఢత విలువలు ఉష్ణోగ్రతతో ఆధారపడి ఉంటాయి. ఉదాహరణకు సిలికాన్ కు ni
విలువ 300 కెల్విన్ ఉష్ణోగ్రత వద్ద (గది ఉష్ణోగ్రత వద్ద) సుమారు 1.08×1010 cm−3 ఉంటుంది. [6]
సాధారణంగా, డోపింగ్ ఎక్కువగా జరిగితే, వాహకాల (ఎలక్ట్రాన్లు, హోలులు) అధిక గాఢత కారణంగా వాహకత్వం పెరుగుతుంది. క్షీణించిన (చాలా ఎక్కువ డోపింగ్ జరిగిన) అర్థవాహకాలు లోహాలతో పోల్చదగిన వాహకత స్థాయిలను కలిగి ఉంటాయి. వీటిని తరచూ ఇంటిగ్రేటెడ్ సర్క్యూట్లలో లోహానికి బదులుగా ఉపయోగిస్తారు. సెమీకండక్టర్లలో సాపేక్ష డోపింగ్ గాఢతను సూచించడానికి తరచుగా వాటి ఘాతంలో ప్లస్ (+), మైనస్ (-) చిహ్నాలు ఉపయోగించబడతాయి. ఉదాహరణకు n+ అనేది n-రకం అర్థవాహకాన్ని సూచిస్తుంది. ఇది అదికంగా డోపింగ్ గాఢత గల అర్థవాహకం. అదే విధంగా p− అనేది చాలా తక్కువగా డోప్ చేయబడిన p-రకం అర్థవాహకం.
డోపింగ్ క్షీణించిన స్థాయిలు కూడా ఆధార అర్థవాహకమునకు సంబంధించి తక్కువ మలినాలను సూచిస్తాయి. స్వభావజ "సిలికాన్ స్ఫటికం" లో సుమారు 5×1022 atoms/cm3 ఉంటాయి. సిలికాన్ అర్థవాహకంలో డోపింగ్ గాఢత 1013 cm−3 నుండి 1018 cm−3 వరకు ఉండవచ్చు. డోపింగ్ గాఢత 1018 cm−3 కంటే ఎక్కువ ఉంటే గది ఉష్ణోగ్రత వద్ద క్షీణించినట్లు భావించాలి. క్షీణించిన డోప్ చేయబడిన సిలికాన్ లో మలినాలు, సిలికాన్ లు 1000 భాగాలలో అనుపాతంలో ఉంటాయి. ఈ అనుపాతం బిలియన్ భాగాలలో తగ్గితే అది అతి తక్కువ డోప్ చేయబడిన సిలికాన్. సాధారణ గాఢత విలువలు ఈ పరిధిలో ఎక్కడో వస్తాయి. సెమీకండక్టర్ ఉద్దేశించిన పరికరంలో కావలసిన లక్షణాలను ఉత్పత్తి చేయడానికి ఇవి అనుకూలంగా ఉంటాయి.
బ్యాండ్ నిర్మాణంపై ప్రభావం

స్ఫటికంలో అర్థవాహకాన్ని డోపింగ్ చేయడం వలన బ్యాండ్ గ్యాప్ లో శక్తి స్థాయిలను పరిచయం చేయవచ్చు. కానీ శక్తి పట్టీకి చలా దగ్గరగా ఉంటే డోపెంట్ రకం (డోపింగ్ చేయబడిన పదార్థ రకం) ను తెలియజేస్తుంది. ఎలక్ట్రాన్ దాత మాలిన్యాలు వాహక పట్టీ (కండక్షన్ బ్యాండ్) కి దగ్గరగా స్థాయిలను సృష్టిస్తే, గ్రహీత మాలిన్యాలు వేలన్సీ బ్యాండ్ (సంయోజక పట్టీ) కి దగ్గరగా స్థాయిలను సృష్టిస్తాయి. ఈ శక్తి స్థాయిలు, దగ్గరగా ఉన్న శక్తి పట్టీకి మధ్య ఖాళీ ప్రాంతమును సాధారణంగా డోపెంట్-సైట్ బంధ శక్తి లేదా EB అంటారు. ఇది సాపేక్షంగా తక్కువ ఉంటుంది. ఉదాహరణకు, సిలికాన్ సముదయంలో బోరాన్కు EB విలువ 0.045 eV ఉంటుంది. ఇది సిలికాన్ శక్తి అంతరం సుమారు 1.12 eV గో పోల్చదగినదిగా ఉంటుంది. 1.12EB చాలా తక్కు వ అయినందున ప్రయోగాత్మకంగా అన్ని మాలిన్య అణువుల ఉష్ణ అయనీకరణానికి, వేలన్సీ, వాహక పట్టీలలో ఆవేశ వాహకాలను సృష్టించడానికి గది ఉష్ణోగ్రత చాలదు. "ఫెర్మి స్థాయి" కి సాపేక్షంగా శక్తి స్థాయిలను మార్చడంలో డోపెంట్లు (మాలిన్యాలు) కూడా ముఖ్యమైన ప్రభావాన్ని కలిగి ఉంటాయి. అధిక గాఢత గల మాలిన్యంతో అనుగుణంగా ఉండే శక్తి స్థాయి ఫెర్మి స్థాయికి దగ్గరగా ఉంటుంది. ఉదాహరణకు, p-n జంక్షన్ లక్షణాలు p- రకం, n- రకం పదార్థం యొక్క ప్రాంతాలను సంప్రదించడంలో బ్యాండ్లను వరుసలో పెట్టవలసిన అవసరం ఫలితంగా జరిగే "బ్యాండ్ బెండింగ్" కారణంగా జరుగుతుంది.
ఈ ప్రభావం "బ్యాండ్ డయాగ్రం" లో కనిపిస్తుంది. బ్యాండ్ రేఖాచిత్రం సాధారణంగా ప్రాదేశిక పరిమాణానికి వ్యతిరేకంగా వాలెన్స్ బ్యాండ్, కండక్షన్ బ్యాండ్ అంచులలోని వైవిధ్యాన్ని సూచిస్తుంది, దీనిని తరచుగా x అని సూచిస్తారు. ఫెర్మి స్థాయి సాధారణంగా రేఖాచిత్రంలో సూచించబడుతుంది. కొన్నిసార్లు డోపింగ్ లేనప్పుడు ఫెర్మి స్థాయి అయిన అంతర్గత ఫెర్మి స్థాయి, Ei తో చూపబడుతుంది. ఈ రేఖాచిత్రాలు అనేక రకాల సెమీకండక్టర్ పరికరాల ప్రవృత్తిని వివరించడంలో ఉపయోగపడతాయి.
విధానం
తక్కువ సంఖ్యలో డోపాంట్ అణువులు విద్యుత్ వాహకం కలుగజేసి అర్థవాహక సమర్థ్యాన్ని మార్చగలవు. 100 మిలియన్ అణువులకు ఒక డోపాంట్ అణువు చొప్పున చేర్చినప్పుడు, తక్కువ లేదా తేలికైన డోపింగ్ గా చెప్పబడుతుంది. మరెన్నో డోపాంట్ అణువులను చేర్చినపుడు అనగా పదివేల అణువులకు ఒకటి చొప్పున డోపెంట్ అణువు చేర్చినపుడు అధిక లేదా భారీ డోపింగ్ గా సూచిస్తారు. ఇది తరచుగా n- రకం డోపింగ్ కోసం n +, లేదా p- రకం డోపింగ్ కోసం p + గా చూపబడుతుంది.
డోపెంట్ మూలకాలు
గ్రూపుIV అర్థవాహకాలు
వజ్రం, సిలికాన్, జెర్మేనియం, సిలికాన్ కార్బైడ్, సిలికాన్ జెర్మేనియం వంటి గ్రూపు 4 అర్థవాహకాలకు సాధారణంగా గ్రహీత మాలిన్యాలుగా గ్రూపు 3 మూలకాలు లేదా దాత మాలిన్యాలుగా గ్రూపు 6 మూలకాలు ఉపయోగిస్తారు. బోరాన్ అనేది సిలికాన్ ఇంటిగ్రేటెడ్ సర్క్యూట్ ఉత్పత్తికి ఎంపిక చేసే p-రకం డోపెంట్, ఎందుకంటే ఇది జంక్షన్ లోతులను సులభంగా నియంత్రించగలిగేలా వ్యాపనం చేస్తుంది.
భాస్వరం సాధారణంగా సిలికాన్ పొరల యొక్క పెద్ద-డోపింగ్ కోసం ఉపయోగించబడుతుంది, అయితే ఆర్సెనిక్ జంక్షన్లను విస్తరించడానికి ఉపయోగిస్తారు, ఎందుకంటే ఇది భాస్వరం కంటే నెమ్మదిగా వ్యాప్తి చెందుతుంది, తద్వారా మరింత నియంత్రించబడుతుంది. భాస్వరం సాధారణంగా సిలికాన్ పొరలకు ఎక్కువ - డోపింగ్ కోసం ఉపయోగిస్తారు. జంక్షన్లను విస్తరించడానికి ఆర్సెనిక్ ఉపయోగించబడుతుంది. ఎందుకంటే ఇది భాస్వరం కంటే నెమ్మదిగా వ్యాప్తి చెందుతుంది. తద్వారా మరింత నియంత్రించబడుతుంది.
స్వచ్ఛమైన సిలికాన్ ను ఫాస్పరస్ వంట్ గ్రూఫు 5 మూలకాలతో డోపింగ్ చేయడం ద్వారా బంధంలో పాల్గొనని ఎలక్ట్రానులు ఉండి వేలన్సీ ఎలక్ట్రాను అధికంగా ఉంటాయి. ఈ రకం అర్థవాహకంలో ఎలక్ట్రాను వాహక కణాలుగా ఉంటాయి. ఇటువంటి అర్థ వాహకాన్ని n-రకం అర్థవాహకంఅంటారు. గ్రూపు III మూలకాలతో డోపింగ్ చేయడం వలన బంధ ఏర్పడటంలో అష్టక విన్యాసం పొందక నాల్గవ వేలన్సీ ఎలక్ట్రాన్ స్థాన్ ఖాళీగా ఉంటుంది. ఇటువంటి ఎలక్ట్రాన్ లేమి ప్రాంతాలను "హోలులు" అంటారు. ఇటువంటి అర్థ వాహకాలలో వాహక కణాలు "హోలులు". కనుక ఇటువంటి అర్థవాహకాలను p-రకం అర్థవాహకంఅంటారు. ఈ విషయంలో గ్రూపు V మూలకాలు ఎలక్ట్రాన్ దాతలుగాను, గ్రూపు III మూలకాలు గ్రహీతలు గానూ వ్యవహరిస్తారు. ఈ ముఖ్యమైన భావన భౌతిక శాస్త్రంలో "డయోడ్" ల్ ఉపయోగపడుతుంది. ఒక పి-రకం, ఎన్-రకం అర్థవాహకాలను సరైన రీతిలో అతికించినపుడు పి-ఎన్ జంక్షన్ డయోడు ఏర్పడుతుంది.
చాలా భారీగా డోప్ చేయబడిన అర్థవాహకం మంచి విద్యుద్వాహకం (లోహం) లాగా ప్రవర్తిస్తుంది. తద్వారా మరింత సరళ సానుకూల ఉష్ణ గుణకాన్ని ప్రదర్శిస్తుంది. ఈ ప్రభావాన్ని "సెన్సిస్టర్స్" తయారీలో ఉపయోగిస్తారు[7]. తక్కువ స్థాయిలో డోపింగ్ చేయబడిన అర్థవాహకాలు థెర్మిస్టర్ల తయరీలో ఉపయోగిస్తారు.
సిలికాన్ డోపెంట్స్ (సిలికాన్ మాలిన్యాలు)
- గ్రహీత మాలిన్యాలు, p-రకం : బోరాన్, అల్యూమినియం, గాలియం, ఇండియం.
- దాత మాలిన్యాలు, n-రకం: ఫాస్పరస్, ఆర్సెనిక్, ఆంటిమొనీ[8], బిస్మత్, లిథియం[9]
ఇతర అర్థవాహకాలు
- గాలియం ఆర్సెనైడ్
- n-రకం: టెల్లూరియం, సల్ఫర్, తగరం, సిలికాన్, జెర్మేనియం,
- p-రకం: బెరెలియం, జింకు, క్రోమియం, సిలికాన్, జెర్మేనియం.
- గాలియం ఫాస్పైడ్
- n-రకం: టెల్లూరియం, సెలేనియం, సల్ఫర్.
- p-రకం: జింకు, మెగ్నీషియం,
- గాలియం నైట్రైడ్, ఇండియం గాలియం నైట్రైడ్, అల్యూమినియం గాలియం నైట్రైడ్
- n-రకం: సిలికన్, జెర్మేనియం, కర్బనం.
- p-రకం: మెగ్నీషియం,
- కాడ్మియం టెల్లూరైడ్
- n-రకం: ఇండియం, అల్యూమినియం, క్లోరిన్
- p-రకం: ఫాస్పరస్, లిథియం, సోడియం.
- కాడ్మియం సల్ఫైడ్
- n-రకం: గాలియం, అయొడిన్, ఫ్లోరిన్
- p-రకం: లిథియం, సోడియం
మూలాలు
- ↑ మూస:Cite web
- ↑ మూస:Cite book
- ↑ Woodyard, John R. "Nonlinear circuit device utilizing germanium" మూస:US patent filed, 1944, granted 1950
- ↑ మూస:Cite news
- ↑ Sparks, Morgan and Teal, Gordon K. "Method of Making P-N Junctions in Semiconductor Materials", మూస:US patent (Filed June 15, 1950. Issued March 17, 1953)
- ↑ మూస:Cite journal
- ↑ Cheruku, Dharma Raj and Krishna, Battula Tirumala (2008) Electronic Devices and Circuits, 2nd edition, Delhi, India, మూస:ISBN
- ↑ మూస:Cite book
- ↑ Weinberg, Irving and Brandhorst, Henry W. Jr. (1984) మూస:US patent "Lithium counterdoped silicon solar cell"
- ↑ మూస:Cite book