పై

testwiki నుండి
Jump to navigation Jump to search
దస్త్రం:Pi-unrolled-720.gif
ఒక వృత్తం వ్యాసం 1 అయితే, దాని చుట్టుకొలత π అవుతుంది.
సంఖ్యలుకరణీయ సంఖ్యలు
ζ (3)√2√3√5φαe – పై – δ
బైనరీ 11.00100100001111110110…
డెసిమల్ 3.14159265358979323846…
హెక్సా డెసిమల్ 3.243F6A8885A308D31319…
కొనసాగే భిన్నాలు 3+17+115+11+1292+
Note that this continued fraction is not periodic.

పై లేదా π అనేది చాలా ముఖ్యమైన గణిత స్థిరాంకాలలో ఒకటి. దీని విలువ సుమారుగా 3.14159.

యూక్లీడియన్ జియోమెట్రీలో ఒక వృత్తం యొక్క వైశాల్యం, అదే వృత్తం యొక్క అర్ధ వ్యాసం యొక్క వర్గంల నిష్పత్తిని "పై" అనే గుర్తుతో సూచిస్తారు. గణితం, సైన్సు, ఇంజినీరింగ్ వంటి అనేక శాస్త్రాలలో వాడే సమీకరణాలలో "π" గుర్తు తరచు వస్తూంటుంది.

"పై" అనేది ఒక కరణీయ సంఖ్య (irrational number) - అంటే రెండు పూర్ణ సంఖ్యల నిష్పత్తి లేదా 'భిన్నం' గా దానిని తెలుపలేము. తత్ఫలితంగా పై యొక్క దశాంక రూపం (decimal representation) ఎప్పటికీ ముగియదు లేదా పునరుక్తి కాదు. అంతే కాదు. అది ఒక transcendental number కూడాను. అంటే పూర్ణ సంఖ్యలతో పరిమితమైన algebraic operations ద్వారా (వర్గీకరణ, వర్గమానము, కూడిక, హెచ్చవేత వంటివి) 'పై' విలువను సాధించలేము. గణిత శాస్త్రం చరిత్రలో 'పై' విలువను మరింత నిర్దిష్టంగా కనుగోవడానికి ఎన్నో ప్రయత్నాలు జరిగాయి. ఈ సంఖ్య పట్ల, దాని భావాలు, రహస్యాల పట్ల సాంస్కృతికంగా కూడా చాలా fascination నెలకొంది.

'చుట్టుకొలత'ను ఆంగ్లంలో perimeter అంటారు. దీనికి గ్రీకు పదం "περίμετρος". ఆ పదంలోని మొదటి అక్షరమైన πను ఈ విలువకు సంకేతంగా గణిత శాస్త్రవేత్త విలియమ్ జోన్స్ బహుశా 1706లో మొదటిగా వాడి వుండవచ్చును. తరువాత కొంత కాలానికి లియొనార్డ్ ఆయిలర్ ద్వారా ఇది బహుళ ప్రచారంలోకి వచ్చింది. దీనిని కొన్ని సందర్భాలలో వృత్త స్థిరరాశి (circular constant) అనీ, ఆర్కిమెడీస్ స్థిరరాశి (కాని ఇది ఆర్కిమెడీస్ సంఖ్య కాదు), లుడోల్ఫ్ సంఖ్య అనీ కూడా ప్రస్తావిస్తారు.

ప్రాథమిక అంశాలు

π అనే గ్రీకు అక్షరం

: నఖచిత్రం తయారుచెయ్యడంలో లోపం జరిగింది
గ్రీకు భాష చిన్నబడి (Lower-case)లో "పై" అనే అక్షరం.

పైన చెప్పినట్లుగా గ్రీకు భాషలో చుట్టుకొలతను περιφέρεια (periphery) లేదా περίμετρος (perimeter) అంటారు. ఆ పదాలలో వాడి మొదటి అక్షరం ద్వారా "పై" అనబడే π వాడుకలోకి వచ్చింది.[1] πకి యూనీకోడ్ సంకేతం U+03C0.[2]

నిర్వచనం

దస్త్రం:Pi eq C over d.svg
చుట్టుకొలత = π × వ్యాసము

యూక్లీడియన్ సమతల రేఖాగణితంలో, π నిర్వచనం - ఒక వృత్తం యొక్క చుట్టుకొలత, వ్యాసముల నిష్పత్తి:[1]

π=cd

ఇక్కడ గమనించ వలసిన విషయం ఏమిటంటే c/d నిష్పత్తి ఆ వృత్తంయొక్క సైజును బట్టి మారదు. వ్యాసం రెట్టింపు అయితే చుట్టుకొలత కూడా రెట్టింపు అవుతుంది. కనుక c/d నిష్పత్తి అదే ఉంటుంది. ఆవిలువే 'పై'. అన్ని వృత్తాలలో ఉన్న రేఖా సారూప్యత దీనికి కారణం.

దస్త్రం:Circle Area.svg
వృత్తం వైశాల్యం = π × చాయా వర్ణంలో వేయబడిన చతురస్రం యొక్క వైశాల్యం.

మరో విధంగా 'పై' విలువను ఇలా చెప్పవచ్చును - ఒక వృత్తం యొక్క వైశాల్యానికి, ఆ వృత్తపు అర్ధవ్యాసం భుజంగా కలిగిన చతురస్రం వైశాల్యానికి ఉన్న నిష్పత్తి.:[1][3]

π=Ar2

రేఖా గణితపు చాపం యొక్క పొడవు, వైశాల్యాలతో సంబంధం లేకుండా ఇతర విధాలుగా కూడా 'పై'ను నిర్వచింపవచ్చును. ఉదాహరణకు: త్రికోణమితి ఫంక్షన్ "కొసైన్" ద్వారా. కాస్ (x) = 0 అయ్యే అతి తక్కువ ధనసంఖ్య xకు రెట్టింపు విలువ.[4] 'పై' విలువను నిర్వచించే మరొకొన్ని సమీకరణాలు క్రింద ఇవ్వబడ్డాయి.

కరణీయత, ట్రాన్సెండెన్స్

(Irrationality and transcendence)

π ఒక కరణీయ సంఖ్య - అంటే దానిని రెండు పూర్ణ సంఖ్యల నిష్పత్తిగా తెలుపడం సాధ్యం కాదు. ఈ విషయం 1761లో జోహాన్ హెన్రిక్ లాంబర్ట్ ఋజువు చేశాడు.[1] 20వ శతాబ్దంలో integral calculus కంటే ఎక్కువ పరిజ్ఞానం లేకుండానే ఈ విషయాన్ని ఋజువు చేసే విధానం కనుగొనబడింది. వీటిలో ఇవాన్ నివెన్ కనుగొన్న విధానం ఎక్కువ మందికి తెలుసు.[5][6] ఇలాంటిదే కాని అంతకు ముందే ఒక ఋజువు మేరీ కార్ట్‌రైట్ ద్వారా తెలుపబడింది.[7]

అంతే కాకుండా π ఒక ట్రాన్సెండంటల్ సంఖ్య కూడాను. ఈ విషయం 1882లో ఫెర్డినాండ్ వాన్ లిండ్‌మన్ ఋజువు చేశాడు. దీని అర్ధం ఏమంటే - రేషనల్ (అకరణీయ) సంఖ్యలు coefficients గా కలిగిన ఏ పాలినామియల్‌కూ π అనేది ఒక మూలము‌గా ఉండడం జరుగదు.[8] π యొక్క ఈ transcendence కారణంగా అది కన్‌స్ట్రక్టిబుల్ సంఖ్య కాదు. అంటే ఏమిటి? - రేఖా గణితంలో కంపాస్, లంబకోణం ల ద్వారా గోయడానికి సాధ్యమైన అన్ని బిందువులూ constructible numbers. ఒక వృత్తానికి వర్గం నిర్మించడం సాధ్యం కాదు. అనగా కేవలం compass, straightedge లు మాత్రమే వినియోగిస్తూ ఒక వృత్తానికి సమానమైన వైశాల్యం కలిగిన చతురస్రాన్ని నిర్మించడం సాధ్యం కాదు.[9]

పై సంఖ్య విలువ

π యొక్క ట్రంకేటెడ్ విలువ 50 దశాంశ స్థానాల వరకు ఇలా ఉంది.:[10]

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510

"పై" విలువను 10 వేల కోట్ల (ట్రిలియన్ అనగా (1012)) స్థానాలవరకు గుణించారు.[11] కాని సాధారణంగా వాడే లెక్కలకు (ఉదాహరణకు వృత్తం యొక్క వైశాల్యం కనుగోవడానికి) ఒక డజను కంటే మించిన స్థానాల విలువ అవుసరపడదు. ఉదాహరణకు మనము శోధించగలిగిన విశ్వం పరిమాణంలో పట్టే ఎంత పెద్ద వృత్తం చుట్టుకొలతనయినా గాని 39 స్థానాల 'పై' విలువతో గనుక లెక్కిస్తే వచ్చే ఫలితంలోని అంచనాల వ్యత్యాసం హైడ్రోజన్ పరమాణువు యొక్క సైజు కంటే మెరుగుగా ఉంటుంది. .[12]

π ఒక కరణీయ సంఖ్య గనుక దాని దశాంశ సంఖ్యలు ఎంతకూ ముగియవు లేదా పునరావృతం కావు. ఈ గుణం వల్ల 'పై' అంటే గణిత శాస్త్రజ్ఞులకూ, సామాన్యులకూ చాలా ఉత్సుకత కలుగజేస్తుంది. గడచిన కొద్ది శతాబ్దాలలో పై విలువ కనుగోవడానికీ, దాని ఇతర లక్షణాలు కనుగోవడానికీ ఎన్నో ప్రయత్నాలు జరిగాయి.[13] సూపర్ కంప్యూటర్‌ల ద్వారా ఎన్నో లెక్కలు వేయబడ్డాయి. ట్రిలియన్ స్థానాల వరకు పై విలువ కనుగొన్నారు. ఎంతో విశ్లేషణ జరిగింది. కాని 'పై' విలువలో వచ్చే అనంతమైన అంకెల విధానంలో ఎటువంటి (simple pattern in the digits) సరళమైన అమరిక కనుగొనబడలేదు.[14] చాలా వెబ్ పేజీలలో పై విలువ లభిస్తుంది. వ్యక్తిగత కంప్యూటర్‌లలో π విలువ లెక్కించే సాఫ్ట్‌వేర్ ఉంది.

π విలువను కొలవడం

π విలువను empirical గా కొలిచే విధానం ఇది - ఒక పెద్ద వృత్తాన్ని గీడి, దాని వ్యాసాన్ని, చుట్టుకొలతను కొలవాలి. చుట్టుకొలత విలువను వ్యాసం విలువతో భాగించాలి. ఆ వచ్చే విలువే π అవుతుంది. ఎంత పెద్ద వృత్తం గీసినా, లేదా ఎంత చిన్న వృత్తం గీసినా ఈ విలువ మారకూడదు. మరొక్క రేఖా గణిత విధానాన్ని ఆర్కిమెడీస్ కనుక్కొన్నాడు. r అనే అర్ధ వ్యాసంతో ఒక వృత్తాన్ని గీయాలి. ఆ వృత్తం యొక్క వైశాల్యం కనుక్కోవాలి. ఇందుకు వృత్తం లోపల సమ బహుభుజి (Inscribed regular polygon) ని గీసి, ఆ సమభుజి వైశాల్యాన్ని కనుగొనాలి. సమభుజి యొక్క భుజాలు ఎన్ని ఎక్కువగా ఉంటే వృత్తం యొక్క వైశాల్యం అంత నిర్దిష్టంగా వస్తుందన్నమాట. ఈ వృత్తం వైశాల్యం A అనుకొందాము.[15] అదే వృత్తం అర్ధ వ్యాసం యొక్క వర్గం (దాని పొడవుకు సమానమైన సమ చతురస్రం యొక్క వైశాల్యం) r2 = B అనుకోండి. ఈ A, B ల యొక్క నిష్పత్తి విలువ π అవుతుంది.[15]

πApolygonr2

రేఖా గణితంతో సంబంధం లేకుండా π విలువను కేవలం పూర్తి గణిత విధానాలలో కూడా గణించవచ్చును. కాని వీటిలో చాలా విధానాలు అర్ధం చేసుకోవడానికి త్రికోణమితి, కలన గణితంలలో గణనీయమైన పరిజ్ఞానం కావలసి వస్తుంది. కాని కొన్ని సరళమైన పద్ధతులు కూడా ఉన్నాయి. ఉదాహరణకు గ్రెగరీ-లీబ్నిజ్ సిరీస్:[16]

π=4143+4547+49411.

ఈ సిరీస్ వ్రాయడానికి, లెక్కపెట్టడానికి అంత కష్టం కాదు గాని దాని ద్వారా π విలువ ఎందుకు వస్తుందనేది అంత తేలికగా అర్ధమయ్యే విషయం కాదు. అంతే కాకుండా, ఈ సిరీస్ చాలా నిదానంగా converge అవుతుంది. 300 terms దాకా వెళితే కూడా π విలువ రెండు దశాంశ స్థానాల వరకు కచ్చితంగా రాదు.[17] ఈ లీబ్నిజ్ సిరీస్ ని మొదటిగా 15వ శతాబ్దానికి చెందిన మాధవ సంఘమాగ్రమ కనుగొన్నారు. ఈయన ప్రసిద్ధ భారతదేశ ఖగోళ గణిత శాస్త్రవేత్త. వీరు లీబ్నిజ్ కంటే 300 సంవత్సరాలక్రితమే కనుగొన్నారు. కావున ఈ శ్రేణిని మాధవ - లీబ్నిజ్ సిరీస్ అనికూడా అంటారు.

ఇవి కూడా చూడండి

మూలాలు, వనరులు

మూస:Reflist

బయటి లింకులు

"https://te.wiki.beta.math.wmflabs.org/w/index.php?title=పై&oldid=33" నుండి వెలికితీశారు