ద్రావణీయతా సమతాస్థితి

testwiki నుండి
Jump to navigation Jump to search

ద్రావణీయతా సమతాస్థితి గతిక స్వభావం గలది. ఒక రసాయన పదార్థం యొక్క ఘన స్థితి, దాని ద్రావణం సమతాస్థితిలో ఉన్నట్లైతే, దానిని ద్రావణీయతా సమతాస్థితి అని అంటాం. ఆ పదార్థం ద్రావణంలో వియోగం చెందవచ్చు, లేదా ఆ ద్రావణిలో ఉన్న వేరే పదార్థంతో చర్య జరపవచ్చు (ఉదాహరణకు ఆమ్లం లేదా క్షారం, లేదా ఏ మార్పు చెందకుండా ఉండవచ్చు. ప్రతి సమతాస్థితికి ఉష్ణోగ్రత మీద ఆధారపడే సమతాస్థితి స్థిరాంకం ఉంటుంది. ఆయానిక సమతాస్థితి ఫార్మసీటికల్, పర్యావరణ, ఇతర శాఖలలో ఎంతో ఉపయోగపడుతుంది.

నిర్వచనములు

ఒక రసాయన పదార్థం యొక్క ఘన స్థితి, దాని ద్రావణం సమతాస్థితిలో ఉన్నట్లైతే దానిని ద్రావణీయతా సమతాస్థితి అని అంటాం. ఈ సమతాస్థితి గతిక సమతాస్థికికి ఉదాహరణ. కరిగే వేగం, అవక్షేపం చెందే వేగం సమానం ఉండేలా అణువులు ఘనస్థితి నుండి ద్రావణం లోకి అలాగే ద్రావణం నుండి ఘన స్థితి లోకి కదులుతుంటాయి. సమతాస్థితిలో ఉన్న ద్రావణాన్ని సంతృప్త ద్రావణం అని అంటారు. సంతృప్త ద్రావణంలో ద్రావితం యొక్క గాఢతను ద్రావణీయత అని అంటారు. ద్రావణీయత యొక్క యూనిట్లు molar (mol dm−3). ద్రావణీయత ఉష్ణోగ్రత మీద ఆధారపడుతుంది. ద్రావణీయత కన్నా ద్రావితం యొక్క గాఢత ఎక్కువ ఉన్నట్లైతే దానిని అతిసంతృప్త ద్రావణం అని అంటారు. ద్రావితం యొక్క స్ఫటికం లేదా ఏదైనా ఘన పదార్థం వేయడం ద్వారా అతి సంతృప్త ద్రావణాన్ని సమతాస్థితికి తీసుకురావచ్చు.

ఆయానిక సమతాస్థితి మూడు రకాలు.

1. కరుగుట.

2. వియోగం చెందుతూ కరుగుట. ఇది సాధారణంగా లవణాలలో జరుగుతుంది. ఆ సమతాస్థితి స్థిరాంకాన్ని ద్రావణీయతా లభ్దమ్ అని అంటారు.

3. చర్య జరుగుతూ కరుగుట. ఇది బలహీన ఆమ్లం, బలహీన క్షారం నీటిలో కరిగాన్నప్పుడు జరుగుతుంది.

సమతాస్థితి స్థిరాంకాన్ని ఆక్టివిటీలను భాగించినప్పుడు వచ్చే ఫలితంలాగా చెప్పవచ్చు. ఆక్టివిటీకి పరిమాణం లేకపోవడం వల్ల సమతాస్థితికి కూడా పరిమాణం ఉండదు. కానీ ఆక్టివిటీల వాడుక సౌకర్యంగా ఉండదు. కాబట్టి మనం గాఢతల యొక్క భాగ ఫలితాన్ని తీసుకుంటాము. ద్రావణీయత స్థిరాంకాలు ఒక్కఉష్ణోగ్రత మీదే కాదు కానీ ద్రావణిలో ఉండే ఇతర పదార్థాల మీద కూడా ఆధారపడుతుంది. (ద్రావితం నుండి వచ్చిన పదార్థాలు కాకుండా).

ప్రావస్థ ప్రభావం

సమతాస్థితి కొన్ని స్ఫటిక ప్రావస్థాలకు మాత్రమే చెప్పబడుతుంది. కాబట్టి ద్రవనీయతా లభ్దం ఘనం యొక్క ప్రావాస్థం మీద ఆధారపడుతుంది. ఉదాహరణకు అరగనైట్, కాల్సైట్ కి ఒకటే రసాయన సూత్రం ఉన్నప్పటికీ వాటి ద్రావణీయతా లభ్దాలు వేరు. కానీ సాధారణంగా ఒకే ప్రావస్థం ఉష్ణగతికంగా స్టేబుల్ ఉండడంవలన ఈ ప్రావస్థమ్ మాత్రమే సమతాస్థితిలో ఉంటుంది.

కణము యొక్క పరిమాణ ప్రభావం

ఉష్ణగతిక ద్రావణీయతా స్థిరాంకాన్ని పెద్దవైన స్ఫటికాలకు నిర్వచించబడుతుంది. కణాల యొక్క పరిమాణము తగ్గించడం వల్ల ఉపరితల శక్తి తగ్గి, ద్రావణీయత పెరుగుతుంది. కణాల యొక్క పరిమాణము 1 μm కన్నా ఎక్కువగా ఉంటే ఈ ప్రభావం చాలా తక్కువగా ఉంటుంది. ఈ ప్రభావాన్ని ఈ విధంగా చెప్పవచ్చు:

log(*KA)=log(*KA0)+γAm3.454RT

*KA అనేది ద్రావితం యొక్క ద్రవనీయత లభ్దమ్, మొలర్ ఉపరితల వైశాల్యం A ఉన్నప్పుడు. ద్రావణీయతా లభ్దమ్ *KA0, మొలర్ ఉపరితల వైశాల్యం 0 కి దగ్గరలో ఉన్నప్పుడూ ద్రావణీయత లభ్దమ్ యొక్క విలువ. γ అనేది ద్రావితం యొక్క ఉపరితల ఒత్తిడి. Am అనేది ద్రావితం యొక్క మొలర్ ఉపరితల వైశాల్యం . T అనేది ఉష్ణోగ్రత (K)

లవణ ప్రభావం

ద్రావితంలో ఉన్న అయాను లేని లవణం ద్రావణంలో ఉండడం వల్ల గాఢతలు మారుతాయి. దీని వల్ల సమతాస్థితి స్థిరాంకం విలువ మారుతుంది.

ఉష్ణోగ్రత ప్రభావం

ద్రావణీయత ఉష్ణోగ్రత మార్పిడి వల్ల మారుతుంది. ఉదాహరణకు పంచదార చల్లటి నీటిలో కన్నా వేడి నీటిలో ఎక్కువగా కరుగుతుంది. ద్రావణీయత స్థిరాంకాలు ఉష్ణోగ్రత మీద ఆధారపడడం వల్ల ఇలా అవ్తుంది. లీ చాట్లియర్ సూత్రం ప్రకారం, కరగడం ఉష్ణగ్రాహకం ఐతే ఉష్ణోగ్రత పెరుగుదల వల్ల ద్రావణీయత పెరుగుతుంది. కరగడం ఉష్ణమోచకం ఐతే ఉష్ణోగ్రత పెరుగుట వల్ల ద్రావణీయత తగ్గుతుంది. ఈ ప్రభావాన్నిరసాయన పదార్థాలను శుద్ధి చేయడానికి ఉపయోగిస్తారు.

ఉష్ణోగ్రత 32. 4 కన్నా తక్కువ ఉన్నప్పుడు సోడియం సల్ఫేట్ యొక్క ద్రావణీయత ఉష్ణోగ్రత పెరగడం వల్ల పెరుగుతుంది కానీ ఎక్కువ ఉష్ణోగ్రతలలో తగ్గుతుంది.

పీడనం ప్రభావం

ఘన, ద్రవ స్థితిల్లో పీడనం యొక్క ప్రభావం సాధారణంగా తక్కువగా ఉంటుంది. ఆదర్శ ద్రావణం అని అనుకుంటూ పీడమ్ ప్రభావం ఈ విధంగా చెప్పవచ్చు:

(lnNiP)T=Vi,aqVi,crRT

Ni అనేది మోల్ ఫ్రాక్షన్, P అనేది పీడనం, టి ఉష్ణోగ్రత స్థిరంగా ఉన్నట్టు సూచిస్తుంది, Vi, aq అనేది ద్రావణం లోని ith భాగం యొక్క పార్షల్ మోలార్ వాల్యూమ్, Vi, cr అనేది ఘనం లోని ith భాగం యొక్క పార్షల్ మోలార్ వాల్యూమ్.

ద్రావణీయత మీద పీడనం యొక్క ప్రభావం ప్రయూగాత్మకంగా ఉపయోగపడుతుంది. ఉదాహరణకు నూనె గానుల ప్రేసిపితశన్ ఫౌలింగ్ కాల్షియం సల్ఫెట్ తో చేయబడుతుంది. ఈ విధానంలో పీడనం తగ్గుట వల్ల ద్రావణీయత తగ్గుతుంది. దీనివల్ల సమయం గడుస్తుంటే ఉత్పాదకతా తగ్గుతుంది.

కరుగుట

కర్బన పదార్థం యొక్క కరుగుట దాని ఘనా స్థితి, ద్రావణం మధ్య సమతాస్థితి లాగా చెప్పవచ్చు. ఉదాహరణకు సుక్రోస్ సంతృప్త ద్రావణం తీసుకుంటే

C12H22O11(s)C12H22O11(aq).

ఈ చర్యకు సమతాస్థితి స్థిరాంకాన్ని ఈ విధంగా రాయవచ్చు:

K={C12H22O11(aq)}{C12H22O11(s)}

Kఅనేది ఉష్ణోగటిక ద్రావణీయత స్థిరాంకం . {} ఆక్టివిటీని సూచిస్తాయి. ఘనా పదార్థం యొక్క ఆక్టివిటి విలువ "1". కాబట్టి

K={C12H22O11(aq)}

A అనే పదార్థం యొక్క ఆక్టివిటీని దాని గాఢత [A], ఆక్టివిటి స్థిరంకం activity coefficient, γ ల లభ్దమ్. Kని γతో భాగించినప్పుడు వచ్చే ద్రావణీయత స్థిరాంకం Ks, Ks=[C12H22O11(aq)]

ద్రావణీయత స్థిరంకం యొక్క యూనిటు, ద్రావితం యొక్క యూనిటు ఒక్కటే. సుక్రోస్ కి 25 °C

K=1. 971 mol dm−3.

అంటే సుక్రోస్ యొక్క ద్రావణీయత 2 mol dm−3 (540 g/l). సుక్రోస్ ఎక్కువ గాఢతలలో కూడా అతి సంతృప్త ద్రావణము ఏర్పరుచుకోలేదు. కానీ మిగిలిన కార్బోహైడ్రేట్లు ఏర్పరుచుకోగలవు.

వియోగం చెందుతూ కరుగుట

సాధారణంగా ఆయనిక సమ్మేళనాళాలు నీటిలో వేసినప్పుడు వియోగం చెందుతాయి. ఉదాహరణకు, కాల్షియం సల్ఫైట్ :

CaSO4(s)Ca2+(aq)+SO42(aq)
K={Ca2+(aq)}{SO42(aq)}{CaSO4(s)}={Ca2+(aq)}{SO42(aq)}

K అనేది ఉష్ణగతిక సమతాస్థితి స్థిరంకం, {} ఆక్టివిటిని సూచిస్తుంది. ఘనా పదార్థం యొక్క ఆక్టివిటి "1".

లవణం యొక్క ద్రావణీయత చాలా తక్కువగా ఉన్నప్పుడూ ద్రావణంలో ఉన్న ఆయాన్ల ఆక్టివిటీ స్థిరంకం కూడా "1"కి దగ్గరగా ఉంటుంది. వాటిని "1"గా తీసుకుని ద్రావణీయత స్థిరాంకాన్ని ఈ విధంగా రాయవచ్చు:

Ksp=[Ca2+(aq)][SO42(aq)].

ApBq అనే సమ్మేళనం యొక్క ద్రావణీయత స్థిరంకం:

ApBq మూస:Eqm pAq+ + qBp-
Ksp = [A]p[B]q

ఆ సమ్మేళనం వియోగం చెందినప్పుడు Bయొక్క గాఢత A యొక్క గాఢతకి q/p సార్లు ఉంటుంది. [B]=q/p [A] కాబట్టి :

Ksp = [A]p (q/p)q [A]q
=(q/p)q × [A]p+q
[A]=Ksp(q/p)qp+q

ద్రావణీయత విలువ "S" =[A]/p. కాబట్టి

S=[A]p=[B]q=Ksp(q/p)qpp+qp+q=Kspqqppp+q

ఉదాహరణలు:

CaSO4: p=1, q=1, S=Ksp
Na2SO4: p=2, q=1, S=Ksp43
Al2(SO4)3: p=2, q=3, S=Ksp1085

ద్రావణీయత లభ్దాలు సాధారణంగా లాగరితం లలో రాస్తారు. ఉదాహరణకు, కాల్షియం సుల్ఫట్ కి Ksp = మూస:Val, log Ksp = -4. 32 . ఎంత చిన్న విలువ ఐతే లాగరితం విలువ అంతా ఎక్కువ నెగెటివ్ ఉంటుంది, వియోగత అంత తక్కువ ఉంటుంది.

కొన్ని లవణాలు పూర్తిగా వియోగం చెందవు. ఉదాహరణకు MgSO4. వాటి ద్రావణీయతలను చర్య చెందుతూ కరుగుటలో ఇచ్చిన విధానం ద్వారా కనుక్కుంటారు.

హైడ్రా క్సైడ్లు

హైడ్రాక్సైడ్ల యొక్క ద్రావణీయత స్థిరాంకాలను K*sp, లాగా వ్రాస్తాము, హైడ్రాక్సైడ్ గాఢత బదులు హైడ్రోజెన్ గాఢతను ఉపయోగిస్తాము. వాటి రెండింటి గాఢతల మధ్య సంభందం ఈ విధంగా ఉంటుంది.

:Kw=[H+][OH-]

Kw. అనేది నీటి ఆయానిక లభ్దమ్. 

ఉదాహరణకు,

Ca(OH)2 మూస:Eqm Ca2+ + 2 OH-
Ksp = [Ca2+][OH-]2 = [Ca2+]Kw2[H+]-2
K*sp = Ksp/Kw2 = [Ca2+][H+]-2

మామూలు ఉష్ణోగ్రతల దగ్గర log Ksp for Ca (OH) 2 యొక్క విలువ -5. log K*sp = -5 + 2 × 14 = 23

ఉభయ సామాన్య అయాన్ ప్రభావం

ఒక లవణం లోని కాటయాన్ లేదా ఎనయాన్ ఉభయ సామాన్యంగా ఉండే వేరొక లవణం చేరినప్పుడు మొదటి లవణం యొక్క ద్రావణీయత తగ్గుతుంది. ఈ ప్రభావాని ఉభయ సామాన్య అయాన్ ప్రభావం అని పేర్కొంటాము. ఉదాహరణకు, సోడియం క్లోరైడ్ AgCl ద్రావణంలో వేసినప్పుడు AgCl యొక్క ద్రావణీయత తగ్గిపోతుంది.

AgCl(s) మూస:Eqm Ag+(aq) + Cl-(aq); Ksp = [Ag+][Cl-]

ద్రావణీయత ఈ విధంగా కనుక్కోవచ్చు. [Ag+], [Cl-] యొక్క గాఢతలు సమానంగా ఉంటాయి. ఎందుకంటే 1 మోల్ AgCl వియోగం చెందినప్పుడు 1 మోల్ Ag+, 1 మోల్ Cl- వస్తాయి. [Ag+] (aq) యొక్క గాఢతని "x" అని అనుకుంటే

Ksp = x2; S = x = Ksp

Ksp for AgCl is equal to మూస:Val mol2dm−6 కాబట్టి దాని ద్రావణీయత

మూస:Val mol dm−3.

ఇప్పుడు సోడియం క్లోరైడ్ కూడా ఉన్నట్లైతే, (గాఢత 0. 01 mol dm−3) మూస:Val mol dm−3.

x2 + 0. 01 x - Ksp = 0
x2 0. 01 xతో చూస్తే చాలా చిన్నది. కాబట్టి :S = x = Ksp / 0. 01 = మూస:Val mol dm−3,
వెండి యొక్క గ్రావిమెట్రిక్ విశ్లేషణలో AgCl. మొత్తం అవక్షేపణం చెందడానికి ఉభయ సామాన్య అయాన్ ప్రభావం ఉపయోగిస్తాము. 

చర్య జరుగుతూ కరుగుట

సాధారణంగా ఇటువంటి కేసులో ఆమ్లా మాధ్యమంలో బలహీన క్షారం కరిగి ఉంటుంది.
B(s) + H+ (aq) మూస:Eqm BH+ (aq)

అలాగే క్షార మాధ్యమంలో బలహీన ఆమ్లాలు కరుగుట కూడా చాలా ముఖ్యం

HnA(s) + OH-(aq) మూస:Eqm Hn-1A-(aq) + H2O

సాధారణంగా చార్జ్ లేని పరమాణువుకి ఆయానిక్ రూపంలో కంటెతక్కువ ద్రావణీయత ఉంటుంది. కాబట్టి ద్రావణీయత pH మీద, ద్రావితం యొక్క ఆమ్లా అయనీకరణ స్థిరాంకం మీద ఆధారపడుతుంది. అయనీకరణం చెందని ఆమ్లం లేదా క్షారం యొక్క ద్రావణీయతని ఇంట్రిన్సిక్ ద్రావణీయత అని అంటారు.

కాంప్లెక్స్ ఏర్పడడం ద్వారా కూడా ద్రావణీయత మారవచ్చు. ఉదాహరణకు, అమ్మోనియాని సిల్వేర్క్లోరైడ్ ద్రావణంలో వేయడం వల్ల అది ఎక్కువగా కరుగుతుంది. ఇది అమ్మైన్ కాంప్లెక్స్ వల్ల జరుగుతుంది.

AgCl(s) +2 NH3(aq) మూస:Eqm [Ag(NH3)2]+ (aq) + Cl- (aq)

కొన్ని చర్యల్లో ద్రావణీయత కనుక్కోవడానికి రెండు లేదా ఇంకా ఎక్కువ సమతాస్థితి లను పరిశీలించవలసి వస్తుంది.

Intrinsic solubility equilibrium B (s) మూస:Eqm B (aq) : Ks = [B (aq) ]
Acid-base equilibrium B (aq) + H+ (aq) మూస:Eqm BH+ (aq) Ka = [B (aq) ][H+ (aq) ]/[BH+ (aq) ]

ప్రయోగాత్మకంగా కనుక్కొనుట

ద్రావణీయతని కనుక్కోవటం చాలా ఇబ్బందులతో కూడినది, మొదటి ఇబ్బంది ఒక ఉష్ణోగ్రతలో సమ్మేళనాన్ని సమతాస్థితికి ఈసుకురావడం. అవక్షేపణం, కరుగుతీ సాధారణంగా చాలా నెమ్మదిగా జరుగుతాయి. నెమ్మదిగా జరిగితే ద్రావణి ఆవిరి అయిపోవడం సమస్య కావచ్చు. అతి సంతృప్తమ్ జరగవచ్చు. తక్కువగా కరిగే పదార్థాలలో గాఢతలు చాలా తక్కువ ఉండడం వల్ల వాటిని కనుక్కోవటం చాలా కష్టం అవుతుంది. ద్రావణీయత కనుక్కోవడానికి రెండు విధానాలు ఉన్నాయి, స్థిరమైన, గతిక.

స్థిరమైన పద్ధతులు

ఈ పద్ధతిలో మిశ్రమాన్ని సమతాస్థితి లోకి తీసుకువచ్చి ద్రావణిలో గాఢతను రసాయన విశ్లేషణ ద్వారా కనుక్కుంటారు. దీని కోసం ఘనాని, ద్రావణాన్ని వేరు చేయవలసి ఉంటుంది. రేడియో ఆక్టివ్ ట్రేసర్ తో తక్కువ గాఢతలను కనుక్కోవచ్చును.

వేరే విధానం ఏమిటంటే, ఒక పదార్థం యొక్క ద్రావణం (ద్రావణి నీరు కాదు) ఒక సజల బఫర్ లో కలపడం. వెంటనే అవక్షేపణ జరిగుతుంది. ఇటువంటి మిశ్రామం యొక్క ద్రావణీయతని "చలన ద్రావణీయత" అని అంటారు. ఈ కణాలు చాలా చిన్నవగా ఉండడం వల్ల దీని చలన ద్రావణీయత సమతాస్థితి ద్రావణీయత కన్నా ఎక్కువగా ఉంటుంది .

గతిక పద్దతులు

కార్బన ఆంలల, క్షారల యొక్క ద్రావణీయత ల విలువ "చేసింగ్ ఈక్విలిబ్రియమ్ సాలిబిలిటీ" అనే పద్ధతి ద్వారా కనుక్కోవచ్చును. ఈ పద్ధతిలో ఒక పదార్థాన్ని అది ఎక్కువ అయనీకరణం అయ్యే pH లో కరిగించి, తర్వాత, తక్కువ అయనీకరణం అయ్యే pH లో వేస్తారు. తర్వాత బలమాన ఆమ్లం లేదా క్షారం వేసి కరగడం, అవక్షేపణ రేట్లు సమానం అయ్యే pH కి తీసుకువస్తారు. ఈ పద్ధతి వల్ల ఉపయోగం ఏమిటంటే ఇది చాలా వేగవంతమైన పద్ధతి, ఎందుకంటే అవక్షేపం యొక్క పరిమాణం చాలా తక్కువగా ఉంటుంది. కానీ ఈ పద్ధతి అతిసంతృప్తం ద్రావణాల వల్ల ప్రభావితం కావచ్చు.