కోణీయ వేగం

testwiki నుండి
Jump to navigation Jump to search

భౌతిక శాస్త్రంలో, కోణీయ వేగం అనేది ఒక వస్తువు మరొక బిందువుచుట్టూ ఎంత వేగంగా భ్రమణం లేదా పరిభ్రమణం చెందుతుందో సూచిస్తుంది, అనగా ఒక వస్తువు కోణీయ స్థానం లేదా విన్యాసం కాలంతో ఎంత వేగంగా మారుతుందో తెలియజేస్తుంది. కోణీయ వేగం రెండు రకాలు: కక్ష్య కోణీయ వేగం, స్పిన్ కోణీయ వేగం. స్పిన్ కోణీయ వేగం దాని భ్రమణ కేంద్రం చుట్టూ దృఢమైన వస్తువు ఎంత వేగంగా భ్రమణం చెందుతుందో సూచిస్తుంది. కక్ష్య కోణీయ వేగం ఒక స్థిర మూలాధారం చుట్టూ ఒక బిందువు వస్తువు ఎంత వేగంగా తిరుగుతుందో సూచిస్తుంది.

సాధారణంగా, కోణీయ వేగం ప్రమాణాన్ని ప్రమాణ కాలంలో కోణంగా కొలుస్తారు. ఉదా: రేడియన్లు/సెకను. కోణీయ వేగం యొక్క SI ప్రమాణాలు రేడియన్లు / సెకనుగా కొలుస్తారు. కోణీయ వేగాన్ని ఒమేగా గుర్తుతో (ω, కొన్నిసార్లు Ω) సూచిస్తారు. సాంప్రదాయం ప్రకారం ధనాత్మక కోణీయ వేగం అపసవ్య దిశను, ఋణాత్మక కోణీయ వేగం సవ్యదిశను సూచిస్తారు.

ఉదాహరణకు భూస్థిరకక్ష్యలో పరిభ్రమించే ఉపగ్రహం భూమధ్య రేఖ మీదుగా దాని కక్ష్యలో ఒక పరిభ్రమణ లేదా 360 డిగ్రీలు భ్రమించడానికి 24 గంటలు పడుతుంది. అందువలన దాని కోణీయ వేగం ω = 360 / 24 = 15 డిగ్రీలు/గంట లేదా 2π / 24 ≈ 0.26 రేడియన్లు/గంట. ఒకవేళ కోణాన్ని రేడియన్లలో సూచిస్తే, రేఖీయవేగం దాని కోణీయ వేగానికి వ్యాసార్థం రెట్లు ఉంటుంది. అనగా v=rω . భూ కేంద్రం నుండి కక్ష్యా వ్యాసార్థం 42,000 కి.మీ అయినందున అంతరిక్షంలో ఆ ఉపగ్రహం వడి v = 42,000 × 0.26 ≈ 11,000 కి.మీ/గం. కోణీయ వేగం ధనాత్మకం అయినందున ఆ ఉపగ్రహం భూభ్రమణానికి తూర్పువైపు కదులుతుంది. (ఉత్తర ధృవం నుండి అపసవ్య దిశలో) [1] త్రిమితీయంగా కోణీయవేగం మిధ్యా సదిశ.

బిందు కణానికి కక్ష్యా కోణీయవేగం

దస్త్రం:Angular velocity1.svg
The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.

ద్విమితీయంలో ఉన్న కణానికి

సరళమైన సందర్భంలో, r వ్యాసార్థం గల వృత్తాకార మార్గంలో పరిభ్రమిస్తున్న వస్తువు x-అక్షం నుండి కోణీయ స్థానభ్రంశం ϕ(t) , ఆ కక్ష్య కోణీయ వేగం కోణీయ స్థానభ్రంశం లో మార్పురేటుకు సమానంగా ఉంటుంది. అనగా ω=dϕdt. ఇందులో ϕ ను రేడియన్లలో కొలుస్తారు. x-అక్షం నుండి ఆ కణం కదిలిన రేఖీయ స్థానభ్రంశం =rϕ, అందువలన రేఖీయ వేగం v(t)=ddt=rω(t). అందువల్ల ω=vr అవుతుంది.

సాధారణ సందర్భంలో ఒక తలంలో కదులుతున్న కణానికి ఎంచుకున్న మూలానికి సంబంధించి స్థాన సదిశ "స్వీప్ అవుట్" కోణ రేటును కక్ష్యా కోణీయ వేగం అంటారు. పటంలో మూలబిందువు O నుండి కణం P కు స్థాన సదిశ 𝐫 కు నిరూపక బిందువు (r,ϕ). ( అని చరరాశులు కాలం t కు ప్రమేయాలుగా ఉంటాయి) ఆ బిందువు రేఖీయ వేగాన్ని విభజిస్తే 𝐯=𝐯+𝐯 అవుతుంది. ఇందులో రేడియల్ అంశం 𝐯 వ్యాసార్థానికి సమాంతరంగా ఉంటుంది. స్పర్శరేఖాంశం 𝐯 వ్యాసార్థానికి లంబంగా ఉంటుంది. ఎప్పుడైతే రేడియల్ అంశం లేకపోతే ఆ కణం మూలస్థానం చుట్టూ వృత్తాకార మార్గంలో తిరుగుతుంది. కానీ లంబాశం (స్పర్శరేఖాంశం) లేకపోతే ఆ కణం మూలస్థానం నుండి సరళరేఖలో కదులుతుంది. రేడియల్ చలనం కోణాన్ని మార్చకుండా వదిలివేస్తుంది కాబట్టి, రేఖీయ వేగం యొక్క క్రాస్-రేడియల్ భాగం మాత్రమే కోణీయ వేగానికి దోహదం చేస్తుంది.

కాలపరంగా కోణీయ స్థానంలోని మార్పు రేటును కోణీయ వేగం ω క్రాస్-రేడియల్ వేగం నుండి గణించబడుతుంది.

ω=dϕdt=vr.

ఇచట క్రాస్-రేడియల్ వేగం v అనేది 𝐯 యొక్క పరిమాణానికి సంజ్ఞ. అపసవ్య చలనానికి ధనాత్మకం, సవ్య దిశకు ఋణాత్మకం. రేఖీయ వేగం 𝐯 కు నిరూపక బిందువులను తీసుకుంటే దాని పరిమాణం v (రేఖీయ వడి), వ్యాసార్థ సదిశకు సంబంధించిన కోణం θ; సాంకేతిక పదములలో v=vsin(θ) అవుతుంది. అందువలన

ω=vsin(θ)r.

ఈ సమీకరణములు 𝐫=(x(t),y(t)), 𝐯=(x(t),y(t)) and ϕ=arctan(y(t)/x(t)) నుండి ఉత్పాదించబడవచ్చు. విక్షేప సూత్రంతో కలిపి v=𝐫r𝐯, ఇందులో 𝐫=(y,x).


మూలాలు

మూస:మూలాలజాబితా

బాహ్య లంకెలు

మూస:Wiktionary మూస:Commons category