ఎలక్ట్రాన్ సంగ్రహణ

ఎలక్ట్రాన్ సంగ్రహణ అంటే, విద్యుదావేశ పరంగా తటస్థంగా ఉండే పరమాణువులో దాని కేంద్రకం K లేదా L ఎలక్ట్రాన్ షెల్ల నుండి ఒక ఎలక్ట్రాన్ను గ్రహించడం. దీన్ని K-ఎలక్ట్రాన్ సంగ్రహణ, K- సంగ్రహణ, లేదా L- ఎలక్ట్రాన్ సంగ్రహణ, L- సంగ్రహణ అని కూడా అంటారు. ఇంగ్లీషులో దీన్ని ఎలక్ట్రాన్ క్యాప్చర్ అంటారు. ఈ ప్రక్రియలో కేంద్రకంలో ఉండే ప్రోటాన్ న్యూట్రాన్గా మారుతుంది. అదే సమయంలో ఒక ఎలక్ట్రాన్ న్యూట్రినో వెలువడుతుంది.
- p + e− → n + νe
- లేదా, అణు చర్య సమీకరణం లాగా రాసినపుడు
- ν
ఈ ఒక్క ఉద్గార న్యూట్రినో లోనే మొత్తం క్షీణత శక్తి ఉంటుంది కాబట్టి, దానికి ఈ ఒక్క విలక్షణ శక్తి ఉంటుంది. అదేవిధంగా, న్యూట్రినో ఉద్గారంలో ఉండే ద్రవ్యవేగం, ఉత్పన్న పరమాణువును ఒకే లక్షణ ద్రవ్యవేగంతో వెనక్కి తిప్పడానికి కారణమవుతుంది.
ఫలితంగా వచ్చిన ఉత్పన్న న్యూక్లైడ్, అది ఉత్తేజిత స్థితిలో ఉన్నట్లయితే, గ్రౌండ్ స్థితికి మారుతుంది. సాధారణంగా, ఈ పరివర్తన సమయంలో గామా కిరణాలు విడుదలవుతాయి. అయితే అంతర్గత మార్పిడి ద్వారా న్యూక్లియర్ డీ-ఎక్సైటేషన్ కూడా జరగవచ్చు.
పరమాణువులో, లోపలి కక్ష్యలో ఉన్న ఎలక్ట్రాన్ను సంగ్రహించిన తరువాత, ఆ ఎలక్ట్రాన్ స్థానం లోకి బయటి కక్ష్య లోని ఎలక్ట్రాన్ వచ్చి చేరుతుంది. ఈ ప్రక్రియలో ఒకటి లేదా అంతకంటే ఎక్కువ విలక్షణమైన ఎక్స్-రే ఫోటాన్లు విడుదలవుతాయి. ఎలక్ట్రాన్ సంగ్రహణ కొన్నిసార్లు ఆగర్ ప్రభావానికి దారి తీస్తుంది. ఈ ప్రభావంలో, తక్కువ స్థాయి ఎలక్ట్రాన్ స్థితిని అందుకునే ప్రక్రియలో పరమాణువు లోని ఎలక్ట్రాన్ల మధ్య పరస్పర చర్యల కారణంగా పరమాణువు ఎలక్ట్రాన్ షెల్ నుండి ఎలక్ట్రాన్ బయటకు వస్తుంది.
ఎలక్ట్రాన్ సంగ్రహణ జరగడంతో, ఆ మూలకపు పరమాణు సంఖ్య ఒకటి తగ్గిపోతుంది, న్యూట్రాన్ సంఖ్య ఒకటి పెరుగుతుంది, ద్రవ్యరాశి సంఖ్యలో ఎటువంటి మార్పూ ఉండదు. ఈ ప్రక్రియలో ఎలక్ట్రాన్ షెల్లో జరిగిన ఎలక్ట్రాన్ నష్టం, పాజిటివ్ అణు ఛార్జిని కోల్పోవడంతో సమతుల్యం అవుతుంది కాబట్టి, ఎలక్ట్రాన్ సంగ్రహణ పర్యవసానంగా తటస్థ పరమాణువే ఏర్పడుతుంది. అయితే, అగర్ ఎలక్ట్రాన్ ఉద్గారాల వలన పాజిటివు పరమాణు అయాన్ ఏర్పడవచ్చు.
ఎలక్ట్రాన్ సంగ్రహణ అనేది నాలుగు ప్రాథమిక బలాలలో ఒకటైన హీన బలానికి (వీక్ ఫోర్స్) ఉదాహరణ.
కేంద్రకంలో ప్రోటాన్లు ఎక్కువగా ఉండే ఐసోటోప్లలో ఎలక్ట్రాన్ సంగ్రహణ అనేది ప్రాథమిక క్షయ పద్ధతి. అయితే ఐసోటోపుకూ దాని భావి ఉత్పన్న (ఒక ధనాత్మక చార్జ్ తక్కువగా ఉండే ఐసోబార్) ఐసోబారుకూ మధ్య శక్తి వ్యత్యాసం సరిపడినంత ఉండకపోవడంతో న్యూక్లైడ్ పాజిట్రాన్ను విడుదల చేయదు. పాజిట్రాన్ ఉద్గారాల ద్వారా క్షీణించడానికి తగినంత శక్తిని కలిగి ఉండే రేడియోయాక్టివ్ ఐసోటోప్లకు ఎలక్ట్రాన్ సంగ్రహణ అనేది ప్రత్యామ్నాయ పద్ధతి మాత్రమే. ఎలక్ట్రాన్ సంగ్రహణ కొన్నిసార్లు బీటా క్షయంలో ఒక రకంగా భావిస్తారు [1] - ఎందుకంటే హీన బలం ద్వారా జరిగే ప్రాథమిక పరమాణు ప్రక్రియ అలాగే ఉంటుంది. అణు భౌతిక శాస్త్రంలో, బీటా క్షయం అనేది ఒక రకమైన రేడియోధార్మిక క్షయం, దీనిలో బీటా రే (ఫాస్ట్ ఎనర్జీటిక్ ఎలక్ట్రాన్ లేదా పాజిట్రాన్), ఒక న్యూట్రినో లు కేంద్రకం నుండి విడుదలవుతాయి. ఎలక్ట్రాన్ సంగ్రహణను కొన్నిసార్లు విలోమ బీటా క్షయం అని కూడా అంటారు. అయితే ఈ పదం సాధారణంగా ప్రోటాన్తో ఎలక్ట్రాన్ యాంటీన్యూట్రినో యొక్క పరస్పర చర్యను సూచిస్తుంది. [2]
చరిత్ర
ఎలక్ట్రాన్ సంగ్రహణ సిద్ధాంతాన్ని మొదట జియాన్-కార్లో విక్ 1934 పేపర్లో చర్చించారు, ఆపై హిడెకి యుకావా తదితరులు దాన్ని మరింత అభివృద్ధి చేశారు. కె-ఎలక్ట్రాన్ సంగ్రహాన్ని మొదట లూయిస్ అల్వారెజ్, వెనేడియం, మూస:SimpleNuclide2 లో గమనించాడు. అతను 1937లో నివేదించాడు. [3] అల్వారెజ్ గాలియం (మూస:SimpleNuclide2) లోను, ఇతర న్యూక్లైడ్ల లోనూ ఎలక్ట్రాన్ సంగ్రహణను అధ్యయనం చేశాడు (మూస:SimpleNuclide2) [4]
ప్రతిచర్య వివరాలు
సంగ్రహించబడిన ఎలక్ట్రాను, ఆ పరమాణువు లోని ఎలక్ట్రాన్ల లోనే ఒకటి. అంతేగానీ, పైన పేర్కొన్న చర్యలలో (బహుశా) సూచిస్తున్నట్లుగా కొత్తగా, బయటి నుండి వచ్చేదేమీ కాదు. ఎలక్ట్రాన్ సంగ్రహానికి కొన్ని ఉదాహరణలు:
| మూస:Math | మూస:Math | మూస:Math | మూస:Math |
| మూస:Math | మూస:Math | మూస:Math | మూస:Math |
| మూస:Math | మూస:Math | మూస:Math | మూస:Math |
కేవలం ఎలక్ట్రాన్ సంగ్రహణ ద్వారా క్షయం చెందే రేడియోధార్మిక ఐసోటోపులు పూర్తిగా అయనీకరణం చెందినపుడు రేడియోధార్మిక క్షయం చెందకుండా నిరోధించబడవచ్చు (అటువంటి అయాన్లను వివరించడానికి ఇంగ్లీషులో "స్ట్రిప్డ్" అని వాడతారు). అటువంటి మూలకాలు, సూపర్నోవాలలో r-ప్రక్రియ ద్వారా ఏర్పడినట్లయితే, పూర్తిగా అయనీకరణ స్థితిలో బాహ్య అంతరిక్షంలో వెదజల్లబడతాయి. అంతరిక్షంలో ఎలక్ట్రాన్లను ఎదుర్కోనంత వరకు అవి రేడియోధార్మిక క్షయం చెందవు. మూలకాల పంపిణీలలో ఉన్న క్రమరాహిత్యాలు ఎలక్ట్రాన్ సంగ్రహణపై ఈ ప్రభావానికి పాక్షిక కారణం. పూర్తి అయనీకరణం వలన విలోమ క్షయం కూడా జరగవచ్చు; ఉదాహరణకు, మూస:SimpleNuclide2 ఎలక్ట్రాన్ సంగ్రహణ ద్వారా మూస:SimpleNuclide2 గా క్షయం చెందుతుంది. అయితే, పూర్తిగా అయనీకరణం చెందిన మూస:SimpleNuclide2 బౌండ్-స్టేట్ β <sup id="mwnw">-</sup> క్షయం ప్రక్రియ ద్వారామూస:SimpleNuclide2 బంధిత స్థితికి క్షీణిస్తుంది. [5]
కేంద్రకానికి ఎలక్ట్రాన్లు ఎంత దగ్గరగా ఉన్నాయనే దాన్ని బట్టి రసాయన బంధాలు కూడా ఎలక్ట్రాన్ సంగ్రహణ రేటును కొద్ది మొత్తంలో (సాధారణంగా, 1% కంటే తక్కువ) ప్రభావితం చేయవచ్చు. ఉదాహరణకు, 7Be లో, లోహ ఇన్సులేటింగ్ పరిసరాలలో ఉన్నపుడు అర్ధ జీవిత కాలంలో 0.9% వ్యత్యాసాన్ని గమనించారు. [6] సాపేక్షంగా ఇంత పెద్ద ప్రభావానికి కారణం ఏమిటంటే, బెరీలియం ఒక చిన్న పరమాణువు, కేంద్రకానికి దగ్గరగా ఉండే వాలెన్స్ ఎలక్ట్రాన్లను ఉపయోగిస్తుంది, ఇవి కోణీయ ద్రవ్యవేగం లేని కక్ష్యలలో ఉంటాయి. s ఆర్బిటాళ్ళ లోని ఎలక్ట్రాన్లకు (షెల్ లేదా ప్రైమరీ క్వాంటం సంఖ్యతో సంబంధం లేకుండా), కేంద్రకం వద్ద యాంటినోడ్లు ఉండే అవకాశం ఉంది. కేంద్రకం వద్ద నోడ్ను ఉన్న p లేదా d ఎలక్ట్రాన్ల కంటే ఇవి ఎలక్ట్రాన్ సంగ్రహణకు ఎక్కువ లోబడి ఉంటాయి.
ఆవర్తన పట్టిక మధ్యలో ఉన్న మూలకాల్లో మూలకపు స్థిరమైన ఐసోటోప్ల కంటే తేలికైన ఐసోటోప్లు ఎలక్ట్రాన్ సంగ్రహణ ద్వారా క్షీణిస్తాయి. అయితే స్థిరమైన వాటి కంటే భారీగా ఉండే ఐసోటోప్లు ఎలక్ట్రాన్ ఉద్గారాల ద్వారా క్షీణిస్తాయి. ఎలక్ట్రాన్ సంగ్రహణ చాలా తరచుగా న్యూట్రాన్-లోపం ఉన్న భారీ మూలకాలలో జరుగుతుంది - ఇక్కడ ద్రవ్యరాశి మార్పు తక్కువగా ఉంటుంది, పాజిట్రాన్ ఉద్గారం అన్నివేళలా సాధ్యం కాదు. అణు ప్రతిచర్యలో ద్రవ్యరాశి నష్టం సున్నా కంటే ఎక్కువగాను, మూస:Math కంటే తక్కువగానూ ఉన్నప్పుడు పాజిట్రాన్ ఉద్గారాల ద్వారా ప్రక్రియ జరగదు, యథాలాపంగా ఎలక్ట్రాన్ సంగ్రహణ కోసం జరుగుతుంది.
సాధారణ ఉదాహరణలు
కేవలం ఎలక్ట్రాన్ సంగ్రహణ ద్వారా క్షయం చెందే కొన్ని సాధారణ రేడియో ఐసోటోపులు:మూస:Col-start మూస:Col-break మూస:Col-break
| Radio isotope |
Half life |
|---|---|
| మూస:Nuclide | 53.28 d |
| మూస:Nuclide | 35.0 d |
| మూస:Nuclide | 1.03మూస:X10^ y |
| మూస:Nuclide | 60 y |
| మూస:Nuclide | 337 d |
| Radio isotope |
Half life |
|---|---|
| మూస:Nuclide | 27.7 d |
| మూస:Nuclide | 3.7మూస:X10^ y |
| మూస:Nuclide | 2.6 y |
| మూస:Nuclide | 271.8 d |
| మూస:Nuclide | 7.5మూస:X10^ y |
| Radio isotope |
Half life |
|---|---|
| మూస:Nuclide | 3.260 d |
| మూస:Nuclide | 270.8 d |
| మూస:Nuclide | 8.5 d |
| మూస:Su | |
| మూస:Su |
మూలాలు
- ↑ మూస:Citebook
- ↑ మూస:Cite paper మూస:Webarchive
- ↑ మూస:Cite web
- ↑ ఉల్లేఖన లోపం: చెల్లని
<ref>ట్యాగు;kఅనే పేరుగల ref లలో పాఠ్యమేమీ ఇవ్వలేదు - ↑ మూస:Cite paper మూస:Webarchive మూస:Cite web
- ↑ మూస:Cite paper