విద్యుదయస్కాంత వర్ణపటం

testwiki నుండి
imported>InternetArchiveBot (0 మూలము(ల)ను భద్రపరచటానికి ప్రయత్నించగా, 1 పనిచేయనివిగా గుర్తించాను.) #IABot (v2.0.9.5) చేసిన 21:57, 22 జూలై 2024 నాటి కూర్పు
(తేడా) ← పాత కూర్పు | ప్రస్తుత కూర్పు (తేడా) | తరువాతి కూర్పు → (తేడా)
Jump to navigation Jump to search
వివిధ అవధులలో గల పౌనఃపున్యాలు, తరంగదైర్ఘ్యాలు గలిగిన విద్యుదయస్కాంత వర్ణపటంలో గల వివిధ తరంగాలు

"విద్యుదయస్కాంత వర్ణపటం" అనగా వివిధ అవథులలో గల పౌనఃపున్యాలతో కూడిన విద్యుదయస్కాంత వికిరణాల సముదాయం.[1] ఒక వస్తువు యొక్క విద్యుదయస్కాంత వర్ణపటం అనగా ఆ వస్తువు నుండి ఉద్గారమైన లేదా శోషించుకున్న విద్యుదయస్కాంత వికిరణాల సముదాయం అనే వేరొక అర్థం కూడా ఉంది.

విద్యుదయస్కాంత వర్ణపటం అతి తక్కువ పౌనఃపున్యము గల నవీన రేడియో సమాచార వ్యవస్థ నుండి తక్కువ తరంగ దైర్ఘ్యం గల గామా కిరణాల వరకు విస్తరించి ఉన్నాయి. యివి కొన్ని వెల కిలోమీటర్లు తరంగదైర్ఘ్యం నుండి ఒక పరమాణువులో అతి చిన్న భాగం పరిమాణం వరకు విస్తరించి యున్నాయి.వీటిలో అతి ఎక్కువ తరంగ దైర్ఘ్యాల అవథి విశ్వం పరిమాణమంత ఉంటె అతి తక్కువ తరంగ దైర్ఘ్యాల అవథి ప్లాంక్ దైర్ఘ్యంలో అతి చిన్న భాగం వరకు ఉంటుంది, [2] ఈ విద్యుదయస్కాంత వర్ణపటం అవిచ్ఛిన్నంగా అనంతం వరకు వ్యాపించి ఉంటుంది.

విద్యుదయస్కాంత వర్ణపటాన్ని ఎక్కువగా విజ్ఞానశాస్త్రములో వర్ణపటశాస్త్రములో పదార్థ నిర్మాణమును అథ్యయనం చేయుటకు ఉపయోగిస్తారు..[3] వర్ణపటంలో వివిధ భాగములలో గల వికిరణాలు సమాచార రంగం, ఉత్పాదన రంగంలో కూడా ఉపయోగిస్తారు. (ఉపయోగాల గూర్చి చూడండివిద్యుదయస్కాంత వికిరణాలు)

Legend[4][5][6]
γ= Gamma rays MIR= Mid infrared HF= High freq.
HX= Hard X-rays FIR= Far infrared MF= Medium freq.
SX= Soft X-rays Radio waves LF= Low freq.
EUV= Extreme ultraviolet EHF= Extremely high freq. VLF= Very low freq.
NUV= Near ultraviolet SHF= Super high freq. VF/ULF= Voice freq.
Visible light UHF= Ultra high freq. SLF= Super low freq.
NIR= Near Infrared VHF= Very high freq. ELF= Extremely low freq.
Freq=Frequency

విద్యుదయస్కాంత వర్ణపటం కనుగొను చరిత్ర

చరిత్ర ప్రకారం, కాంతి అనునది విద్యుదయస్కాంత వర్ణపటంలో తెలిసిన భాగము. పురాతన గ్రీకు శాస్త్రవేత్తలు కాంతి ఋజు మార్గంలో ప్రయాణిస్తుందని, వాటి ధర్మాలైన పరావర్తనం, వక్రీభవనం లను అధ్యయనం చేశారు. ఈ సిద్ధాంతాలు కొన్ని సంవత్సరాలు కొనసాగినప్పటికీ 16వ, 17 వ శతాబ్దాలలో కాంతికి కణ, తరంగ స్వభావం కలదని అనేక సిద్ధాంతములు వెలువడినవి.

కాంతి కాకుండా మిగిలిన విద్యుదయస్కాంత తరంగాలు సా.శ. 1800 సం.లో విల్లియం హెర్షెల్ అనే శాస్త్రవేత్త పరారుణ వికిరణాలు కనుగొనుటలో మొట్టమొదట తెలిసినవి. ఆయన గాజు పట్టకం నుండి వెలువదిన వర్ణపటంలో వివిధ రంగుల యొక్క ఉష్ణోగ్రతలను అధ్యయనం చేశాడు.అతడు ఎరుపు రంగు తర్వాత హెచ్చు ఉష్ణోగ్రతలను గమనించాడు.ఎరుపు రంగు తర్వాత కాంతి రంగులు కనిపించనప్పటికీ ఈ ఉష్ణోగ్రతా మార్పు రావటానికి కారణం "కెలోరిఫిక్ కిరణాలు" అని సైద్ధాంతీకరించాడు. ఆ తర్వాత సంవత్సరం జోహన్న్ రిట్టెర్ అనే శాస్త్రవేత్త పట్టకం నుండి వెలువడిన వర్ణపటంలో ఊదా రంగు ముందు కూడా కిరణాలు ఉన్నాయని గననించి వాటికి "రసాయన కిరణాలు" అని నామకరణం చేశాడు. (కొన్ని రసాయన చర్యల ద్వారా కంటికి కనబడని కిరణాలు ) ఈ కిరణాలు కంటికి కనిపించే ఊదారంగు వలె ఉన్నయని తెలియ జేసి తర్వాత వాటికి అతినీలలోహిత వికిరణాలు అని పేరు పెట్టాడు.

మొట్టమొదట 1845 లో విద్యుదయస్కాంత వికిరణాలు అనెవి విద్యుదయస్కాంతంతో ముడిపడి ఉందని మైకేల్ ఫెరడే అనే శాస్త్రవేత్త తాను ధ్రువిత కాంతి ఒక పారదర్శకమైన పదార్థం గుండా పంపినపుడు అయస్కాంత క్షేత్రం యేర్పడుటను గమనించి తెలియజేశాడు. 1860 లో మాక్స్‌వెల్ అనే శాస్త్రవేత్త విద్యుదయస్కాంత క్షేత్రం యొక్క నాలుగు పాక్షిక అవకలన సమీకరణములు (మాక్స్‌వెల్ సమీకరణములు) అభివృద్ధి చేసిరి. అందులో రెందు సమీకరణములు అయస్కాంత క్షేత్రంలో తరంగాల ప్రవర్తన, తరంగాల అవకాశం గూర్చి వివరిస్తాయి. ఈ సైద్ధాంతిక తరంగాల వేగంగూర్చి విశ్లేషించి మాక్స్ వెల్ అవి కాంగి వేగంతో ప్రయాణిస్తాయని ప్రతిపాదించాడు. ఈ సిద్ధాంతం ఆధారంగా కాంతి కూడా విద్యుదయస్కాంత తరంగమని నిరూపితమైంది.

మక్స్ వెల్ సమీకరణములు కాంతి వేగంతో ప్రయాణిస్తున్న వివిధ పౌనః పున్యాలు గల విద్యుదయస్కాంత తరంగాలను వివరిస్తుంది. ఇది విద్యుదయస్కాంత వర్ణపటం యొక్క ఉనికిని తెలుసుకోవడానికి మొదటి ప్రతిపాదన అయినది.ఒక విధమైన సాధారణ విద్యుత్ వలయంలో కంపుస్తున్న ఆవేశాల నుండి పరారుణ వికిరణాల కంటే తక్కువ పౌనః పున్యంగల తరంగాలు వెలువడుతున్నట్లు మాక్స్ వెల్ సైద్ధాంతీకరించాడు.మాక్స్ వెల్ సమీకరణములు నిరూపించుటకు, ఆ విధమైన తక్కువ పౌనఃపున్యం గల వికిరణాలను తెలుసుకొనుటకు 1886 కీ హెన్రిచ్ హెర్ట్జ్ ప్రస్తుతం మనం పిలువబడుచున్న రేడియో తరంగాలును తయారుచేసే, గుర్తించే పరికరాన్ని కనుగొన్నాడు. హెర్ట్జ్ ఈ తరంగాలు కాంతి వేగంతో ప్రయాణిస్తాయని నిరూపించాడు. ఈ క్రొత్త వికిరణాలు వివిధ బంధాకాలతో కూడిన యానకంలో కాంతి వలె పరావర్తనం, వక్రీభవనం చెంతుతున్నట్లు విశదీకరించాడు. ఉదాహరణకు చెట్ల రెసిన్ తో చేయబడిన ఒక కటకాన్ని ఉపయోగించి అందుగుండా విద్యుదయస్కాంత వికిరణాలను పంప గలిగాడు. తర్వాత ప్రయోగంలో హెర్ట్జ్ మైక్రో తరంగాల యొక్క ఉత్పత్తి, వాటి లక్షణాలను తెలుసుకోగలిగాడు. ఈ క్రొత్త తగంగాలు టెలిగ్రాఫ్, రేడియో ఆవిష్కరణలు చేయటంలో మార్గం సుగమం చేశాయి.

1895 లో విల్హేల్మ్ కన్రాడ్ రాంట్జెన్ అధిక విద్యుత్ వోల్టేజీని ఉత్సర్గనాళం గుండా పంపే ప్రయోగంలో క్రొత్త రకమైన వికిరణాలు ఉద్గారమవ్వటాన్ని గుర్తించాడు. ఈ కిరణాలకు X-కిరణాలు అని నామకరణం చేశాడు. ఈ కిరణాలు పనిషి శరీరం గుండా ప్రయాణిస్తాయి, సాంద్రతర యానకం అయిన ఎముకల గుండా ప్రయాణించవు. అందువల్ల ఈ కిరణాలను వైద్య రంగంలో రేడియో గ్రఫీ (రోగమును గుర్తించుట) లో ఉపయోగిస్తారు.

విద్యుదయస్కాంత వర్ణపటంలో చివరి స్థానంలో గామా కిరణాలు చేరినవి. వీటిని 1900 లో పాల్ విల్లార్డ్ అనే శాస్త్రవేత్త రేడియో ధార్మిక పదార్థం అయిన రేడియం నుండి ఉద్గారమైన వికిరణాలను అధ్యయనం చేయునపుడు ఆల్ఫా, బీటా కిరణాలతో పాటు వెలువడే ఒక క్రొత్త రకమైన వికిరణాలను గుర్తించాడు.అవి ఆల్ఫా, బీటా కిరణాల కంటే చొచ్చుకుపోయే సామర్థ్యం అధికంగా కలిగియున్నాయనై గుర్తించాడు. 1910 లో బ్రిటిష్ భౌతిక శాస్త్రవేత్త అయిన విల్లియం హెన్రీ బ్రాగ్ గామా కిరణములు విద్యుదయస్కాంత తరంగాలను నిర్దారించాడు.అవి కణాలు కాదని వికిరణాలని తెలియజేశాడు. 1914 లో ఎర్నెస్ట్ రూథర్‌ఫోర్డ్ (1903 లో ఆల్ఫా, బీటా కిరణాలకు విభిన్నంగా గల ఈ కిరణాలకు గామా కిరణాలని నామకరణం చేశాడు), ఎడ్వర్డ్ ఆండ్రాడ్ వాటి తరంగదైర్ఘ్యం విలువను కొలిచి ఈ వికిరణాలు X-కిరణాలు కంటే తక్కువ తరంగ దైర్ఘ్యం కలిగి ఎక్కువ పౌనః పున్యం కలిగి యున్నాయని నిరూపించారు.

విద్యుదయస్కాంత వర్ణపట వ్యాప్తి

విద్యుదయస్కాంత తరంగాలు ఈ క్రింది మూడు భౌతిక లక్షణాల ఆధారంగా వివరింపబడతాయి. అవి పౌనః పున్యము f, తరంగదైర్ఘ్యం λ లేదా ఫోటాన్ శక్తి E.

వీటి పౌనః పున్యాల వ్యాప్తి ఖగోళ శాస్త్ర ములో అతిపెద్ద పరిమాణము అయిన మూస:Val (1 GeV గామా కిరణాలు) నుండి ప్లాస్మా పౌనఃపున్యం వరకు (~1 kHz).

తరంగ దైర్ఘ్యం అనునది తరంగ పౌనఃపున్యము నకు విలోమాను పాతంలో ఉంటుంది.[3] అందువల్ల గామా కిరణాలు పరమాణు పరిమాణంలో అతిచిన్న భాగం అంత తక్కువ తరంగ దైర్ఘ్యం కలిగియున్నాయి. ఫోటాన్ శక్తి తరంగ పౌనఃపున్యం నకు అనులోమాను పాతంలో ఉంటుంది. అందువల్ల గామా కిరణం నకు అధిక శక్తి కలిగి ఉంటుంది. (సుమారు బిలియన్ ఎలక్ట్రాన్ వోల్టులు) అదేవిధంగా రేడియో తరంగాలు యొక్క ఫోటాన్ శక్తి చాలా తక్కువగా ఉంటుంది. (సుమారుఫెమ్టో ఎలక్ట్రాన్ వోల్టులు)

పై సంబంధాలు ఈ క్రింది సమీకరణాల తో వివరించవచ్చు.
f=cλ,orf=Eh,orE=hcλ,

where:

పదార్థము యొక్క ప్రసార యానకంలో విద్యుదయస్కాంత తరంగాలు వ్యవస్థితమైతే వాటి యొక్క తరంగ దైర్ఘ్యాలు తగ్గుతాయి. యే యానకం గుండానైనా ప్రయాణిస్తున్న విద్యుదయస్కాంత తరంగాలు సాధారణంగా "శూన్య తరంగ దైర్ఘ్యం"తో సూచించబడతాయి.అయినప్పటికి ఎల్లపుడూ అలా ఉండవు.

సాధారణంగా విద్యుదయస్కాంత వికిరణాలు వాటి తరంగదైర్ఘ్యం ప్రకారం రేడియో తరంగాలు, మైక్రో తరంగాలు, టెరా హెర్ట్జ్ వికిరణాలు, పరారుణ వికిరణాలు, దృగ్గోచర వర్ణపటం (దృశ్య కాంతి, అతినీలలోహిత కిరణాలు, X-కిరణాలు, గామా కిరణాలుగా వర్గీకరింప బడతాయి. విద్యుదయస్కాంత వికిరణాల ప్రవర్తన వాటి తరంగ దైర్ఘ్యం వాటి తరంగ దైర్ఘ్యం పై ఆధారపడి ఉండును. విద్యుదయస్కాంత వికిరణము ఒక ఏక పరమాణువు, అణువు వంతి వాటితో కలిసినపుడు దాని ప్రవర్తన అణువులోకి పోతున్న క్వాంటం (ఫోటాన్) యొక్క శక్తి పరిమాణముపై ఆధారపడి ఉంటుంది.

వర్ణపట శాస్త్రం 400 nm నుండి 700 nm.వరకు తరంగ దైర్ఘ్యం గల దృగ్గోచర వర్ణపటం చుట్టూ విశాలంగా ఆవరించిన విద్యుదయస్కాంత వర్ణపటాన్ని గుర్తిస్తుంది.సాధారణ ప్రయోగ శాలలో గల వర్ణపట లేఖిని 2 nm నుండి 2500 nm.వరకు తరంగ దైర్ఘ్య అవధి వరుకు గల వివిధ వస్తువుల, వాయువుల వంటి వాటి సమాచారాన్ని గుర్తిస్తుంది. ఈ వర్ణపట లేఖినులను ఖగోళ భౌతిక శాస్త్రంలో ఉపయోగిస్తారు. ఉదాహరణకు అనేక హైడ్రోజన్ పరమాణువులు కలిసి 21.12 cm. తరంగ దైర్ఘ్యం,30 Hz పౌనః పున్యం గల రేడియో తరంగం యొక్క ఫోటాన్ ను ఉద్గారం చేస్తాయి. అవి స్టెల్లార్ నెబ్యులా గూర్చి అధ్యయనం చేయుటకు ఉపయోగపడతాయి.[8], మూస:Val పౌనఃపున్యము కలిగిన తరంగాలు ఖగోళ భౌతిక శాస్త్రంలో వివిధ వనరులుగా ఉపయోగపడతాయి.[9]

విద్యుదయస్కాంత కిరణాలు యేర్పడు కారణాలు

విద్యుదయస్కాంత వికిరణాలు, విద్యుదయస్కాంత వర్ణపటంలో వివిధ రకాలను సూచిస్తాయి. వివిధ రకాల కిరణాల సముదాయంలో వివిధ రకాల వికిరణాలను వాటి తరంగ దైర్ఘ్య అవథిని బట్టి నిర్ధారించవచ్చును. అన్ని రకాల వికిరణములు గలిగిన వర్ణపటం అవిచ్ఛిన్నంగా ఉంటుంది.

వర్ణపటంలో ప్రాంతం పదార్థంతో ముఖ్య సంబంధములు
రేడియో తరంగాలు పదార్థంలో ఆవేశ వాహకాల కంపనాల (ప్లాస్మా కంపనాలు) సముదాయము. ఉదా: ఆంటెన్నాలో ఎలక్ట్రాన్ల కంపనాలు.
మైక్రో తరంగాలు పరారుణ వికిరణాలకు దూరంగా గలవి. ప్లాస్మా కంపనాలు, అణువుల భ్రమణం
పరారుణ వికిరణాలకు దగ్గరగా అణువుల కంపనాలు, ప్లాస్మా కంపనాలు (లోహాలలో మాత్రమే)
దృగ్గోచర కాంతి అణువులలో గల ఎలక్ట్రాన్ల ఉత్తేజం (మానవ కంటిలోని రెటీనాలో కనుగొనబడిన పిగ్మెంట్ అణువుల తో), ప్లాస్మా కంపనాలు (లోహాలలో మాత్రమే)
అతినీలలోహిత కిరణాలు అణువుల, వేలన్సీ ఎలక్ట్రాన్ల ఉత్తేజం, కాంతి విద్యుత్ ఫలితంగా ఎలక్ట్రాన్ల మార్పిడి.
X-కిరణాలు పరమాణువులో కోర్ ఎలక్ట్రాన్ల ఉత్తెజం, కాంప్టన్ పరిక్షేపణ (తాక్కువ పరమాణు సంఖ్యలు)
గామా కిరణాలు భార మూలకాల కోర్ ఎలక్ట్రాన్ల ఉత్తేజం, కాంప్టన్ పరిక్షేపణ (అన్ని పరమాణు సంఖ్యలు), పరమాణు కేంద్రకాల ఉత్తెజం,
అధిక శక్తి గల గామా కిరణాలు కేంద్రక కణముల సృష్టి, అధిక శక్తి గల కణాలు, ఉపకణాలు పదార్థ్ంలోనికి పోవుటవలన అధిక శక్తిగల ఏక ఫోటాన్లు తయారగుట.

వికిరణముల రకాలు

విద్యుదయస్కాంత వర్ణపటం

అవథులు

విద్యుదయస్కాంత వికిరణాల యొక్క అవథులు ఈ దిగువనీయబడినవి. కాని వివిధ వికిరణాల ఖచ్చిత అవధిని నిర్వచించబడలేదు. ఇంద్రధనుస్సు (దృగ్గోచర కాంతి యొక్క వర్ణపటం) లో రంగులలో గల పట్టీలు ఒకదానికొకటి కలిసి యున్నట్లు యివికూడా వివిధ హద్దులతో వేరుచేసేటట్లు ఉండవు. ప్రతి వికిరణముయొక్క పౌనః పున్యము, తరంగ దైర్ఘ్యం రెండు ప్రాంతాల వర్ణపటం యొక్క ధర్మాలు కలిసిపోయినట్లుగా ఉంటాయి. ఉదాహరణకు, ఎరుపు కాంతి పరరుణ వికిరణాలతో కలిసి ఉత్తేజపడి కొన్ని రసాయన బంధాలకు శక్తిని అందిస్తుంది. కిరనజన్య సంయోగ క్రియలో రసాయన క్రియలకు శక్తిని అందిస్తుంది. దృగ్గోచర వ్యవస్థ పనిచేయుటకు ఉపయోగపడుతుంది.

వర్ణపట అవధులు

విద్యుదయస్కాంత వికిరణాలు ఈ క్రిందివిధంగా వర్గీకరింపబడినవి.[3]

  1. గామా వికిరణాలు
  2. X-కిరణ వికిరణాలు
  3. అతినీలలోహిత వికిరణాలు
  4. దృగ్గోచర వికిరణాలు
  5. పరారుణ వికిరణాలు
  6. టెరా హెర్ట్జ్ వికిరణాలు
  7. మైక్రో తరంగ వికిరణాలు
  8. రెడియో తరంగాలు

ఈ వర్గీకరణ వాటి తరంగ దైర్ఘ్య ఆరోహణ క్రమంలో ఉంది.ఈ ధర్మం ప్రకారం వివిధ వికిరణాలు వర్గీకరింపబడతాయి.[3] ఒక విధంగా ఈ వర్గీకరణ కచ్చితమైనదైనా, వాస్తవంగా ప్రక్క, ప్రక్క వికిరణాల మధ్య ఆధ్యారోపణం జరుగుతుంది.

X-కిరణాల, గామా కిరణాల మధ్య విభజన వాటి జనకం పై ఆధారపడి ఉంటుంది.: కేంద్రక విఘటనం నుండి లేదా ఇతర కెంద్రక, ఉప కేంద్రక కణాల విధానములో ఉత్పత్తి అయిన ఫోటాన్లు ఎలక్ట్రాన్ల పరివర్తనలో అధిక శక్తిగల అంతర పరమాణు ఎలక్ట్రాన్ల మూలముగా ఎల్లపుడూ గామా కిరణములతో పాటు X-కిరణాలను కూడా ఉత్పత్తి చేస్తాయి.[10][11][12]

సాధారణంగా కేంద్రక పరివర్తనలు ఎలక్ట్రాన్ల పరివర్తనల కన్నా చాలా శక్తి వంతంగా ఉంటాయి. అందువల్ల గామా కిరణాలు X- కిరణాల కన్నా శక్తివంతమైనవి. కాని పరిమితులకు మాత్రమే. ఎలక్ట్రాన్ల పరివర్తనను విశ్లేషించినపుడు అస్థిర మీసాన్ (ఎలక్ట్రాన్ కన్నా 200 రెట్లు ద్రవ్యరాశి గల కణం) లు కలిగిన పరమాణు పరివర్తన కూడా X-కిరణాలను ఉత్పత్తి చేస్తుందని తెలుస్తుంది.కానీ వాటి శక్తి హెచ్చుగా ఉండవచ్చు. మూస:Convert, [13]

మూలాలు

మూస:Reflist

బయటి లింకులు

మూస:Commons category